8.26. GCC-11.2.0

The GCC package contains the GNU compiler collection, which includes the C and C++ compilers.

Approximate build time: 164 SBU (with tests)
Required disk space: 4.3 GB

8.26.1. Installation of GCC

At first, fix an issue breaking libasan.a building this package with Glibc-2.34:

sed -e '/static.*SIGSTKSZ/d' \
    -e 's/return kAltStackSize/return SIGSTKSZ * 4/' \
    -i libsanitizer/sanitizer_common/sanitizer_posix_libcdep.cpp

If building on x86_64, change the default directory name for 64-bit libraries to lib:

case $(uname -m) in
  x86_64)
    sed -e '/m64=/s/lib64/lib/' \
        -i.orig gcc/config/i386/t-linux64
  ;;
esac

The GCC documentation recommends building GCC in a dedicated build directory:

mkdir -v build
cd       build

Prepare GCC for compilation:

../configure --prefix=/usr            \
             LD=ld                    \
             --enable-languages=c,c++ \
             --disable-multilib       \
             --disable-bootstrap      \
             --with-system-zlib

Note that for other programming languages there are some prerequisites that are not yet available. See the BLFS Book GCC page for instructions on how to build all of GCC's supported languages.

The meaning of the new configure parameters:

LD=ld

This parameter makes the configure script use the ld installed by the binutils built earlier in this chapter, rather than the cross-built version which would otherwise be used.

--with-system-zlib

This switch tells GCC to link to the system installed copy of the zlib library, rather than its own internal copy.

Compile the package:

make
[Important]

Important

In this section, the test suite for GCC is considered critical. Do not skip it under any circumstance.

One set of tests in the GCC test suite is known to exhaust the default stack, so increase the stack size prior to running the tests:

ulimit -s 32768

Test the results as a non-privileged user, but do not stop at errors:

chown -Rv tester . 
su tester -c "PATH=$PATH make -k check"

To receive a summary of the test suite results, run:

../contrib/test_summary

For only the summaries, pipe the output through grep -A7 Summ.

Results can be compared with those located at https://www.linuxfromscratch.org/lfs/build-logs/11.0-rc3/ and https://gcc.gnu.org/ml/gcc-testresults/.

Eight tests related to analyzer are known to fail.

One test named asan_test.C is known to fail.

In libstdc++, one test named 49745.cc is known to fail because the header dependencies in glibc have changed.

In libstdc++, one numpunct test and six tests related to get_time are known to fail. These are all because the locale definitions in glibc have changed but libstdc++ does not currently support those changes.

A few unexpected failures cannot always be avoided. The GCC developers are usually aware of these issues, but have not resolved them yet. Unless the test results are vastly different from those at the above URL, it is safe to continue.

Install the package and remove an unneeded directory:

make install
rm -rf /usr/lib/gcc/$(gcc -dumpmachine)/11.2.0/include-fixed/bits/

The GCC build directory is owned by tester now and the ownership of the installed header directory (and its content) will be incorrect. Change the ownership to root user and group:

chown -v -R root:root \
    /usr/lib/gcc/*linux-gnu/11.2.0/include{,-fixed}

Create a symlink required by the FHS for "historical" reasons.

ln -svr /usr/bin/cpp /usr/lib

Add a compatibility symlink to enable building programs with Link Time Optimization (LTO):

ln -sfv ../../libexec/gcc/$(gcc -dumpmachine)/11.2.0/liblto_plugin.so \
        /usr/lib/bfd-plugins/

Now that our final toolchain is in place, it is important to again ensure that compiling and linking will work as expected. We do this by performing some sanity checks:

echo 'int main(){}' > dummy.c
cc dummy.c -v -Wl,--verbose &> dummy.log
readelf -l a.out | grep ': /lib'

There should be no errors, and the output of the last command will be (allowing for platform-specific differences in the dynamic linker name):

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

Now make sure that we're setup to use the correct start files:

grep -o '/usr/lib.*/crt[1in].*succeeded' dummy.log

The output of the last command should be:

/usr/lib/gcc/x86_64-pc-linux-gnu/11.2.0/../../../../lib/crt1.o succeeded
/usr/lib/gcc/x86_64-pc-linux-gnu/11.2.0/../../../../lib/crti.o succeeded
/usr/lib/gcc/x86_64-pc-linux-gnu/11.2.0/../../../../lib/crtn.o succeeded

Depending on your machine architecture, the above may differ slightly. The difference will be the name of the directory after /usr/lib/gcc. The important thing to look for here is that gcc has found all three crt*.o files under the /usr/lib directory.

Verify that the compiler is searching for the correct header files:

grep -B4 '^ /usr/include' dummy.log

This command should return the following output:

#include <...> search starts here:
 /usr/lib/gcc/x86_64-pc-linux-gnu/11.2.0/include
 /usr/local/include
 /usr/lib/gcc/x86_64-pc-linux-gnu/11.2.0/include-fixed
 /usr/include

Again, the directory named after your target triplet may be different than the above, depending on your system architecture.

Next, verify that the new linker is being used with the correct search paths:

grep 'SEARCH.*/usr/lib' dummy.log |sed 's|; |\n|g'

References to paths that have components with '-linux-gnu' should be ignored, but otherwise the output of the last command should be:

SEARCH_DIR("/usr/x86_64-pc-linux-gnu/lib64")
SEARCH_DIR("/usr/local/lib64")
SEARCH_DIR("/lib64")
SEARCH_DIR("/usr/lib64")
SEARCH_DIR("/usr/x86_64-pc-linux-gnu/lib")
SEARCH_DIR("/usr/local/lib")
SEARCH_DIR("/lib")
SEARCH_DIR("/usr/lib");

A 32-bit system may see a few different directories. For example, here is the output from an i686 machine:

SEARCH_DIR("/usr/i686-pc-linux-gnu/lib32")
SEARCH_DIR("/usr/local/lib32")
SEARCH_DIR("/lib32")
SEARCH_DIR("/usr/lib32")
SEARCH_DIR("/usr/i686-pc-linux-gnu/lib")
SEARCH_DIR("/usr/local/lib")
SEARCH_DIR("/lib")
SEARCH_DIR("/usr/lib");

Next make sure that we're using the correct libc:

grep "/lib.*/libc.so.6 " dummy.log

The output of the last command should be:

attempt to open /usr/lib/libc.so.6 succeeded

Make sure GCC is using the correct dynamic linker:

grep found dummy.log

The output of the last command should be (allowing for platform-specific differences in dynamic linker name):

found ld-linux-x86-64.so.2 at /usr/lib/ld-linux-x86-64.so.2

If the output does not appear as shown above or is not received at all, then something is seriously wrong. Investigate and retrace the steps to find out where the problem is and correct it. Any issues will need to be resolved before continuing with the process.

Once everything is working correctly, clean up the test files:

rm -v dummy.c a.out dummy.log

Finally, move a misplaced file:

mkdir -pv /usr/share/gdb/auto-load/usr/lib
mv -v /usr/lib/*gdb.py /usr/share/gdb/auto-load/usr/lib

8.26.2. Contents of GCC

Installed programs: c++, cc (link to gcc), cpp, g++, gcc, gcc-ar, gcc-nm, gcc-ranlib, gcov, gcov-dump, and gcov-tool
Installed libraries: libasan.{a,so}, libatomic.{a,so}, libcc1.so, libgcc.a, libgcc_eh.a, libgcc_s.so, libgcov.a, libgomp.{a,so}, libitm.{a,so}, liblsan.{a,so}, liblto_plugin.so, libquadmath.{a,so}, libssp.{a,so}, libssp_nonshared.a, libstdc++.{a,so}, libstdc++fs.a, libsupc++.a, libtsan.{a,so}, and libubsan.{a,so}
Installed directories: /usr/include/c++, /usr/lib/gcc, /usr/libexec/gcc, and /usr/share/gcc-11.2.0

Short Descriptions

c++

The C++ compiler

cc

The C compiler

cpp

The C preprocessor; it is used by the compiler to expand the #include, #define, and similar statements in the source files

g++

The C++ compiler

gcc

The C compiler

gcc-ar

A wrapper around ar that adds a plugin to the command line. This program is only used to add "link time optimization" and is not useful with the default build options

gcc-nm

A wrapper around nm that adds a plugin to the command line. This program is only used to add "link time optimization" and is not useful with the default build options

gcc-ranlib

A wrapper around ranlib that adds a plugin to the command line. This program is only used to add "link time optimization" and is not useful with the default build options

gcov

A coverage testing tool; it is used to analyze programs to determine where optimizations will have the most effect

gcov-dump

Offline gcda and gcno profile dump tool

gcov-tool

Offline gcda profile processing tool

libasan

The Address Sanitizer runtime library

libatomic

GCC atomic built-in runtime library

libcc1

The C preprocessing library

libgcc

Contains run-time support for gcc

libgcov

This library is linked in to a program when GCC is instructed to enable profiling

libgomp

GNU implementation of the OpenMP API for multi-platform shared-memory parallel programming in C/C++ and Fortran

liblsan

The Leak Sanitizer runtime library

liblto_plugin

GCC's Link Time Optimization (LTO) plugin allows GCC to perform optimizations across compilation units

libquadmath

GCC Quad Precision Math Library API

libssp

Contains routines supporting GCC's stack-smashing protection functionality

libstdc++

The standard C++ library

libstdc++fs

ISO/IEC TS 18822:2015 Filesystem library

libsupc++

Provides supporting routines for the C++ programming language

libtsan

The Thread Sanitizer runtime library

libubsan

The Undefined Behavior Sanitizer runtime library